Accès gratuit
Pré-publication électronique
Dans une revue
Section Pharmacognosie
Publié en ligne 8 décembre 2019
  • Newal CA, Anderson LA, Phillipson JD (1996) Herbal medicine: a guide for health-care professionals. Pharmaceutical Press, London, 432 p [Google Scholar]
  • Pedretti M (1980) L’Erborista Moderno Manuale teóricoprático di fitoterapia com spiegazione dell’effeto farmacologico dele piante medicinali. Studio Editorial, Milan, pp 327–8 [Google Scholar]
  • Velazquez DVO, Xavier HS, Batista JEM, et al (2005) Zea mays L. extracts modify glomerular function and potassium urinary excretion in conscious rats. Phytomedicine 12:363–69 [CrossRef] [PubMed] [Google Scholar]
  • Kaur G, Alam MS, Jabbar Z, et al (2006) Evaluation of antioxidant activity of Cassia siamea flowers. J Ethnopharmacol 108:340–48 [Google Scholar]
  • Grases F, March JG, Ramis, M, et al (1993) The influence of Zea mays on urinary risk factors for kidney stones in rats. Phytother Res 7:146–49 [Google Scholar]
  • Panizza S (1997) Plantas Que Curam: Cheiro do Mato. Ibrasa, Soã Paulo 23. Ed, 279 p [Google Scholar]
  • Wang C, Zhang T, Liu J, et al (2011) Subchronic toxicity study of corn silk with rats. J Ethnopharmacol 137:36–43 [Google Scholar]
  • Liu J, Wang C, Wang Z, et al (2011) The antioxidant and freeradical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chem 126:261–69 [Google Scholar]
  • Habtemariam S (1998) Extract of corn silk (stigma of Zea mays) inhibits tumor necrosis factor-α- and bacterial lipopolysaccharideinduced cell adhesion and ICAM-1 expression. Planta Medica 64:314–18 [CrossRef] [PubMed] [Google Scholar]
  • Nessa F, Ismail Z, Mohamed N (2012) Antimicrobial activities of extracts and flavonoid glycosides of corn silk (Zea mays L). Int J Biotechnol Wellness Indust 1:115–21 [Google Scholar]
  • Guo J, Liu T, Han L, et al (2009) The effects of corn silk on glycaemic metabolism. Nutr Metabol 6:47 [CrossRef] [Google Scholar]
  • Wynn SG, Fougere B (2007) Veterinary herbal medicine. Elsevier, St. Louis, MO, 736 pp [Google Scholar]
  • Choi DJ, Kim SL, Choi JW, et al (2014) Neuroprotective effects of corn silk mays in via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells. Life Sci 109:57–64 [CrossRef] [PubMed] [Google Scholar]
  • Hu QL, Zhang LJ, Li YN, et al (2010) Purification and antifatigue activity of flavonoids from corn silk. Int J Phys Sci 5:321–26 [Google Scholar]
  • Yang J, Li X, Xue Y, et al (2014) Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice. Int J Biol Macromol 64:276–80 [CrossRef] [PubMed] [Google Scholar]
  • Ren SC, Liu ZL, Ding XL (2009) Isolation and identification of two novel flavone glycosides from corn silk (Stigma maydis). J Med Plants Res 3:1009–15 [Google Scholar]
  • Sarepoua E, Tangwongchai R, Suriharn B, et al (2013) Relationships between phytochemicals and antioxidant activity in corn silk. Int Food Res J 20:2073–79 [Google Scholar]
  • Sukandar EY, Sigit JI, Adiwibow LF (2013) Study of kidney repair mechanisms of corn silk (Zea mays L. Hair)-Binahong (Anredera cordifolia (Ten.) Steenis) leaves combination in rat model of kidney failure. Int J Pharmacol 9:12–23 [CrossRef] [Google Scholar]
  • Sarepoua E, Tangwongchai R, Suriharn B, et al (2015) Influence of variety and harvest maturity on phytochemical content in corn silk. Food Chem 169:424–29 [Google Scholar]
  • Judith MD (2005) Étude phytochimique et pharmacologique de Cassia nigricans Vahl (caeslpiniaceae) utilisée dans le traitement des dermatoses au Tchad, thèse de pharmacie, pp 136–40 [Google Scholar]
  • Dohou N, Yamni K, Tahrouch S, et al (2003) Screening phytochimique d’une endémique ibéro-marocaine, thymelaea lythroides. Bull Soc Pharm Bordeaux 142:61–78 [Google Scholar]
  • Yam MF, Ang LF, Ameer OZ, et al (2009) Anti-inflammatory and analgesic effects of Elephantopus tomentosus ethanolic extract. J Acupunct Meridian Stud 2:280–87 [CrossRef] [PubMed] [Google Scholar]
  • Diallo A (2005) Étude de la phytochimie et des activités biologiques de Syzygium guineense WILLD. (Myrtaceae), Thèse de pharmacie. Faculté de Médecine, de Pharmacie et d’Odonto-Stomatologie (Fmpos). Université de Bamako, 100 p [Google Scholar]
  • Saeedeh A, Asna U (2007) Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem 102:1233–40 [Google Scholar]
  • Quettier-Deleu C, Gressier B, Vasseur J, et al (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72:35–42 [Google Scholar]
  • Kubola J, Siriamornpun S (2008) Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem 110:881–90 [Google Scholar]
  • Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of browning reaction prepared from glucosamine. Japan J Nutr 44:307–15 [CrossRef] [Google Scholar]
  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analyt Biochem 269:337–41 [CrossRef] [PubMed] [Google Scholar]
  • Twaij HAA, Kery A, Al Khazraji NK (1983) Some pharmacological, toxicological and phytochemical investigations on Centaurea phyllocephala. J Ethnopharmacol 9:299–314 [Google Scholar]
  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113 [PubMed] [Google Scholar]
  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Exp Biol Med 111:544–47 [Google Scholar]
  • De Miranda GFB, Vilar JC, Nunes Alves IA, et al (2001) Antinociceptive and antiedematogenic properties and acute toxicity of Tabebuia avellendae lor. Ex griseb. Inner bark aqueous extracts. BMC Pharmacol 1:6 [CrossRef] [PubMed] [Google Scholar]
  • Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 30:103–14 [CrossRef] [PubMed] [Google Scholar]
  • Solihah MA, Ishak WRW, Nurhanan AR (2012) Phytochemical screening and total phenolic content of Malaysian Zea mays hair extracts. Int Food Res J 19:1533–38 [Google Scholar]
  • Thoudam B, Kirithika T, Ramya J, et al (2011) Phytochemical constituents and antioxidant activity of various extract of cornsilk (Zea mays L.). Res Pharma Biol Chem Sci 2:986–93 [Google Scholar]
  • Owoyele BV, Negedu MN, Olaniran SO, et al (2010) Analgesic and anti-inflammatory effects of aqueous extract of Zea mays husk in male wistar rats. J Med Food 13:343–47 [CrossRef] [PubMed] [Google Scholar]
  • Nurhanan AR, Ishak WRW, Mohsin SSJ (2012) Total polyphenol content and free radical scavenging activity of cornsilk (Zea mays hairs). Sains Malaysiana 41:1217–21 [Google Scholar]
  • Ebrahimzadeh MA, Pourmorad F, Hafezi S (2008) Antioxidant activities of Iranian corn silk. Turkish J Biol 32:43–49 [Google Scholar]
  • Pozo-Insfran DD, Brenes CH, Saldivar SOS, et al (2006) Polyphenolic and antioxidant content of white and blue corn (Zea mays L.) products. Food Res Int 39: 696–703 [Google Scholar]
  • Maksimovic Z, Malenicic D, Kovacevic N (2005) Polyphenol contents and antioxidant activity of Maydas stigma extracts. Bioresource Technol 96: 873–77 [CrossRef] [Google Scholar]
  • Das K, Tiwari RKS, Shrivastava DK (2010) Techniques for evaluation of medicinal plants product as anti-microbial agent: Current methods and future trends. J Med Plants Res 4:104–11 [Google Scholar]
  • Kessler M, Ubeaud G, Jung L (2003) Anti- and pro-oxidant activity of rutin and quercetin derivatives. J Pharm Pharmacol 55:131–42 [Google Scholar]
  • Cook NC, Samman S (1996) Flavonoids: chemistry, metabolism, cardioprotective effects, and dietary sources. Nutr Biochem 7:66–76 [CrossRef] [Google Scholar]
  • Shahidi F, Wanasundara PKJPD (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32:67–103 [CrossRef] [PubMed] [Google Scholar]
  • Xin Z, Edward EC, Weiqun W, et al (2006) Does organic production enhance phytochemical content of fruit and vegetables? Current knowledge and prospects for research. Hort Technol 16:449–56 [Google Scholar]
  • Ardestani A, Yazdanparast R (2007) Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem 104:21–29 [Google Scholar]
  • Imtara H, Elamine Y, Lyoussi B (2018) Honey antibacterial effect boosting using Origanum vulgare L. essential oil. Evid Based Complementary Alternat Med 7842583, 14 p [Google Scholar]
  • Ferrandiz ML, Alcaraz MJ (1991) Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Action 32:283–88 [CrossRef] [Google Scholar]
  • Di Rosa M (1972) Biological properties of carrageenan. J Pharm Pharmacol 24:89–102 [Google Scholar]
  • Vinegar R, Schreiber W, Hugo R (1969) Biphasic development of carrageenan edema in rats. J Pharmacol Exp Ther 166:96–103 [PubMed] [Google Scholar]
  • González-Gallego J, Sánchez-Campos S, Tuñón MJ (2007) Antiinflammatory properties of dietary flavonoids. Nutr Hosp 22:287–93 [PubMed] [Google Scholar]
  • Murray CW, Porreca F, Cowan A (1988) Methodological refinements in the mouse paw formalin test: An animal model of tonic pain. J Pharmacol Methods 20:175–86 [CrossRef] [PubMed] [Google Scholar]
  • Shibata M, Ohkubo T, Takahashi H, et al (1989) Modified formalin test: characteristic biphasic pain response. Pain 38:347–52 [CrossRef] [PubMed] [Google Scholar]
  • Hunter JC, Singh L (1994) Role of excitatory amino acid receptors in the mediation of the nociceptive response to formalin in the rat. Neurosci Lett 174:217–21 [CrossRef] [PubMed] [Google Scholar]
  • Herrero JF, Laird JM, López-Garcia JA (2000) Wind-up of spinal cord neurones and pain sensation: Much ado about something? Prog Neurobiol 61:169–203 [CrossRef] [PubMed] [Google Scholar]
  • Chen YF, Tsai HY, Wu TS (1995) Anti-inflammatory and analgesic activity from roots of Angelica pubescens. Planta Med 61:28 [Google Scholar]
  • Tjolsen A, Berge OG, Hunskaar S, et al (1992) The formalin test: an evaluation of the method. Pain 51:5–17 [CrossRef] [PubMed] [Google Scholar]
  • Parvizpur A, Ahmadiani A, Kamalinejad M (2006) Probable role of spinal purinoceptors in the analgesic effect of Trigonella foenum (TFG) leaves extract. J Ethnopharmacol 104:108–12 [Google Scholar]
  • Sakurada T, Katsumata K, Tan-No K, et al (1992) The capsaicin test in mice for evaluating tachykinin antagonists in the spinal cord. Neuropharmacology 31:1279–85 [CrossRef] [PubMed] [Google Scholar]
  • Rylski M, Duriaz-Rowinska H, Rewerski W (1979) The analgesic action of some flavonoids in the hot plate test. Acta Physiol Pol 30:385–92 [Google Scholar]
  • Duke JA (1992) Handbook of biological active phytochemicals and their active phytochemicals and their activities. CRC Press, Boca Raton, FL, 208 p [Google Scholar]
  • Kaur R, Singh D, Chopra K (2005) Participation of alpha2 receptors in the antinociceptive activity of quercetin. J Med Food 8:529–32 [CrossRef] [PubMed] [Google Scholar]
  • Naidu PS, Singh A, Kulkarni SK (2003) D2-dopamine receptor and alpha2-adrenoreceptor-mediated analgesic response of quercetin. Indian J Exp Biol 41:1400–4 [PubMed] [Google Scholar]
  • Zhang Y, Jia YY, Guo JL, et al (2013) Effects of (-)-gallocatechin-3-gallate on tetrodotoxin-resistant voltage-gated sodium channels in rat dorsal root ganglion neurons. Int J Mol Sci 14:9779–89 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.