Accès gratuit
Pré-publication électronique
Dans une revue
Phytothérapie
Section Pharmacognosie
DOI https://doi.org/10.3166/phyto-2019-0208
Publié en ligne 10 décembre 2019
  • Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crops Prod 62:250–64 [Google Scholar]
  • Gelband H, Molly Miller P, Pant S, et al (2015) The state of the world’s antibiotics. Wound Healing Southern Africa 8:30–4 [Google Scholar]
  • Krumbein A, Peters P, Brückner B (2004) Flavor compounds and a quantitative descriptive analysis of tomatoes (Lycopersicon esculentum Mill.) of different cultivars in short-term storage. Postharvest Biol Technol 32:15–28 [Google Scholar]
  • Bakkali F, Averbeck S, Averbeck D, et al (2008) Biological effects of essential oils. Food Chem Toxicol 46:446–75 [CrossRef] [PubMed] [Google Scholar]
  • Yahiaoui K, Bouchenak O, Lefkir S, et al (2018) Antibacterial activity of cumin (Cuminum cymminum L.) and cloves (Syzygium aromaticum) essential oils, and their application to the preservation of minced meat. J Fundamental Appl Sci 10:100–17 [Google Scholar]
  • Karbach J, Ebenezer S, Warnke PH, et al (2015) Antimicrobial effect of Australian antibacterial essential oils as alternative to common antiseptic solutions against clinically relevant oral pathogens. Clin Lab 61:61–8 [PubMed] [Google Scholar]
  • Fennane M, Ibn Tattou M (2012) Statistiques et commentaires sur l’inventaire actuel de la flore vasculaire du Maroc. Bulletin de l’Institut scientifique, Rabat, section Sciences de la Vie 34:1–9 [Google Scholar]
  • Shaheen S, Yamin B, Hussain M, et al (2017) A review on Geranium wallichianum D-Don ex-sweet: an endangered medicinal herb from Himalaya Region. Med Aromat Plants (Los Angeles) 6:288. doi:10.4172/2167-0412.1000288 [Google Scholar]
  • Bellakhdar J (2006) Plantes médicinales au Maghreb et soins de base : précis de phytothérapie moderne. Eds Le Fennec [Google Scholar]
  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharma Analysis 6:71–9 [CrossRef] [PubMed] [Google Scholar]
  • Basri DF, Luoi CK, Azmi AM, et al (2012) Evaluation of the combined effects of stilbenoid from Shorea gibbosa and vancomycin against methicillin-resistant Staphylococcus aureus (MRSA). Pharmaceuticals 5:1032–43 [CrossRef] [Google Scholar]
  • Martin SJ, Pendland SL, Chen C, et al (1996) In vitro synergy testing of macrolide-quinolone combinations against 41 clinical isolates of Legionella. Antimicrob Agents Chemother 40:1419–21 [CrossRef] [PubMed] [Google Scholar]
  • Ecran E, Kizak V, Can ŞS, Özçiçek E (2018) Anesthetic potential of geranium (Pelargonium graveolens) oil for two cichlid species, Sciaenochromis fryeri and Labidochromis caeruleus. Aquaculture 491:59–64 [Google Scholar]
  • Ouedrhiri W, Balouiri M, Bouhdid S, et al (2018) Antioxidant and antibacterial activities of Pelargonium asperum and Ormenis mixta essential oils and their synergistic antibacterial effect. Environ Sci Pollut Res 25:29860–7 [CrossRef] [Google Scholar]
  • Singh J, Dilta BS, Gupta YC, et al (2018) Effect of growing media and paclobutrazol on growth, flowering and pot presentability of geranium, Pelargonium x hortorum LH Bailey. Int J Farm Sci 6:128–36 [Google Scholar]
  • Hassane SOS, Ghanmi M, Satrani B, et al (2012) Activité antifongique contre la pourriture du bois de l’huile essentielle de Pelargonium x asperum Erthrt. Ex willd des Îles Comores. Bulletin de la société Royale des Sciences de Liège 81:36–49 [Google Scholar]
  • Ben Hsouna A, Hamdi N, Miladi R, et al (2014) Myrtus communis essential oil: chemical composition and antimicrobial activities against food spoilage pathogens. Chem Biodiv 11:571–80 [CrossRef] [Google Scholar]
  • Kirci D, Öztürk G, Eser M, et al (2018) Biological activity and chemical composition of essential oils from the leaves of Myrtus communis L. Facta universitatis, series physics. Chem Technol 16:144 [Google Scholar]
  • Touaibia M (2015) Composition chimique et activité antifongique de l’huile essentielle de Myrtus communis L. sur milieu de laboratoire et sur les fruits du fraisier. Nature Technol 12:66–72 [Google Scholar]
  • Boroujeni LS, Hojjatoleslamy M (2018) Using Thymus carmanicus and Myrtus communis essential oils to enhance the physicochemical properties of potato chips. Food Sci Nutrition 6(4):1006–14 [CrossRef] [Google Scholar]
  • Zinoviadou KG, Koutsoumanis KP, Biliaderis C (2009) Physicochemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Sci 82:338–45 [CrossRef] [PubMed] [Google Scholar]
  • Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:2–24 [CrossRef] [PubMed] [Google Scholar]
  • Ouelhadj A, Salem LA, Djenane D (2019) Activité antibactérienne de l’huile essentielle de Pelargonium asperum et son potentiel synergique avec la nisine. Phytothérapie 17:140–8 [CrossRef] [lavoisier] [Google Scholar]
  • Cherrat L, Espina L, Bakkali M, et al (2014) Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. J Sci Food Agric 94:1197–204 [CrossRef] [PubMed] [Google Scholar]
  • Inouye S, Takizawa T, Yamaguchi H (2001) Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother 47:565–73 [CrossRef] [PubMed] [Google Scholar]
  • Hammer K, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95:853–60 [Google Scholar]
  • Satrani B, Ghanmi M, Farah A, et al (2007) Composition chimique et activité antimicrobienne de l’huile essentielle de Cladanthus mixtus. Bull Soc Pharm Bordeaux 146:85–96 [Google Scholar]
  • Bassolé H, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17:3989–4006 [CrossRef] [PubMed] [Google Scholar]
  • Pei RS, Zhou F, Ji BP, Xu J (2009) Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against Escherichia coli with an improved method. J Food Sci 74:379–83 [Google Scholar]
  • Gallucci MN, Oliva M, Casero C, et al (2009) Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Frag J 24:348–54 [CrossRef] [Google Scholar]
  • Goñi P, López P, Sánchez C, et al (2009) Antimicrobial activity in the vapor phase of a combination of cinnamon and clove essential oils. Food Chem 116:982–9 [Google Scholar]
  • Burt SA, Fledderman MJ, Haagsman HP, et al (2007) Inhibition of Salmonella enterica serotype Enteritidis on agar and raw chicken by carvacrol vapor. Int J Food Microbiol 119:346–50 [CrossRef] [PubMed] [Google Scholar]
  • Mulyaningsih S, Sporer F, Zimmermann S, et al (2010) Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globules against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 17:1061–6 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.